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1. INTRODUCTION

In the dynamics of open quantum systems the development of the entropy

and other properties of the state are of great interest, e.g., with respect to
thermodynamics, measuring processes, and quantum optics. Clearly, any state

property is expressed by the set of eigenvalues of the density operator. But

in the case of an open system these eigenvalues depend on time and their

explicit computation is tedious. One may ask whether the state properties

can be described by other parameters which are functions of the eigenvalues,

but are more accessible. This is possible when the open system in consider-
ation is a finite-level system. In this case the eigenvalues are the roots of the

characteristic equation which is of finite degree. Closed algebraic expressions

for the roots do not exist in general, but symmetric functions of them may

be expressed algebraically in terms of the elements of the density matrix. To

exploit this fact is the main idea of this paper.

We derive an explicit analytical expression for the von Neumann entropy
in terms of density matrix elements which does not involve the diagonalization

of the density matrix. More precisely, the entropy is obtained as a single

integral of a rational function on the real line which is determined by the

density matrix elements; see equation (5) below. Clearly, the computation of

the rational function involves a finite recursion. It can be easily solved because
it is a linear algebraic problem in n dimensions, where n is the number

of levels.

First we will demonstrate the method for two- and three-level systems

(Section 2), which also can be treated directly. Then we will consider the
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general n-level case (Section 3), where our procedure seems to be profitable

for explicit numerical or analytical calculations.

2. THE CASES OF TWO OR THREE LEVELS

In the two-level case let the density matrix be given by

r 5 Z p1 r 12

r 12 p2 Z
which obviously fulfills

r 2 5 r 2 m 1, m : 5 p1 p2 2 | r 12 | 2

w.r.t. an orthonormal basis of eigenvectors and hence in any basis of c2,

since m is a unitary invariant. Since this identity is tightly connected to the

characteristic equation for the eigenvalues, we will call it the characteristic
identity. Note that the eigenvalues l 1, l 2 are positive or zero, fulfilling l 1 1
l 2 5 1, l 1 l 2 5 m , and, hence, 0 # m # 1/4. By definition the entropy is

S 5 2 Tr[ r log(1 1 r 2 1)] 5 Tr F o
`

k 5 1

p k

k G
where

r k : 5 r (1 2 r )k 5 a (k)
1 r 1 a (k)

0

The latter equality is a consequence of the characteristic identity; the numbers

a (k)
0 and a (k)

1 are determined by the recursion relations

a (1)
1 5 0, a (1)

0 5 m

a (k 1 1)
1 2 a (k)

1 1 m a (k 2 1)
1 5 0,

a (k)
0 5 2 a (k 1 1)

1

Forming the generating functions for these recursion relations,

f0 : 5 o
`

k 5 1

z k 2 1 a (k)
0 , 5

m
1 2 z 1 m z2

f1 : 5 o
`

k 5 1

z k 2 1 a (k)
1 , 5

2 m z

1 2 z 1 m z2

we get for the entropy
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S 5 Tr #
1

0

dz o
`

k 5 1

zk 2 1 [ a (k)
1 r 1 a (k)

0 ] 5 #
1

0

dz( f1 Tr r 1 f0 Tr 1)

Inserting Tr r 5 1, Tr 1 5 2, we have

S 5 #
1

0

dz
(2 2 z) m

1 2 z 1 m z2

Elementary integration using l 1,2 5 1±2 (1 6 ! 1 2 4 m ) shows that the integral

indeed has the correct value

S 5 2 l 1 log l 1 2 l 2 log l 2

The advantage of our procedure arizes for higher level systems when there

is no formula for the roots of the characteristic equation.

Similarly the three-level case can be treated. We will only repeat the

main steps. The density matrix

r 5 )
p1 r 12 r 13

r 21 p2 r 23

r 31 r 32 p3 )
fulfills the characteristic identity

r 3 5 r 2 2 m r 1 d

where

m 5 p1 p2 1 p2 p3 1 p1 p3 2 | r 12 | 2 2 | r 13 | 2 2 | r 23 | 2, d 5 det r

Here two parameters m and d are necessary. We write again the entropy as

S 5 2 Tr[ r log(1 1 r 2 1)] 5 Tr F o
`

k 5 1

r k

k G
where the r k are now defined by

r k : 5 r (1 2 r )k 5 a (k)
2 r 2 1 a (k)

1 r 1 a (k)
0

The coefficients are to be determined by the characteristic identity. Again
one may write down the recursion relations for them and form the generating

functions. The result is

S 5 #
1

0

dz
( m 2 d )z 2 2 3( m 2 d )z 1 2 m

1 2 2z 1 ( m 1 1)z 2 2 ( m 2 d )z 3 (1)
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By elementary integration one can check that

S 5 2 l 1 log l 1 2 l 2 log l 2 2 l 3 log l 3

In the next section we will derive the integral formula in case of an arbitrary

finite number of levels.

3. THE CASE OF n LEVELS

The characteristic identity is

r n 2 m n 2 1 r n 2 1 1 ? ? ? 1 ( 2 1)n 2 1 m 1 r 1 ( 2 1)n m 0 5 0

and the coefficients m k are symmetric functions of the roots of the characteris-

tic equation, namely

m 1 5 o
j

l j, m 2 5 o
j , k

l j l k, . . . , m n 5 &
j

l j

As already stated in the introduction, it is the main idea of the present

paper to use symmetric functions of the roots rather than the roots themselves

as natural parameters to describe the properties of the density matrix. Instead

of the m k one may also use the symmetric functions

3k 5 Tr r k 5 o
n

j 5 1

l k
j , 0 # k # n

Moreover, for the present task it is convenient to rewrite the characteristic

identity as a polynomial in x 5 1 2 r ,

x n 1 An 2 1x
n 2 1 1 ? ? ? 1 A1x 1 A0 5 0 (2)

where the symmetric functions Ak arise as coefficients. These three sets m k ,

3k , and Ak are equivalent in that each one can be expressed in terms of

another. The Ak and m k are connected by the linear transformation

Ak 5 o
n

j 5 k
( 2 1) j 2 k j!

k!( j 2 k)!
m n 2 j

The relation between the m k and the 3k is given by the following determinants.
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m k 5
1

k )
1 32 33 ¼ 3k 2 1 3k

1 1 32 ¼ 3k 2 2 3k 2 1

0 1 1 ¼ 3k 2 3 3k 2 2

¼ ¼ ¼ ¼ ¼ ¼
¼ 1 32

¼ 1 1 )
3k 5 )

1 2 m 2 3 m 3 ¼ (k 2 1) m k 2 1 k m k

1 1 m 2 ¼ m k 2 2 m k 2 1

0 1 1 ¼ m k 2 3 m k 2 2

¼ ¼ ¼ ¼ ¼ ¼
¼ 1 m 2

¼ 1 1 )
In the formula

S 5 2 Tr[ r log(1 1 r 2 1)] 5 Tr F o
`

k 5 1

r k

k G
the r k are defined by

r k 5 r (1 2 r )k 5 o
n 2 1

j 5 0

a (k)
j xk

and the coefficients a (k)
j can be determined with help of the characteristic

identity, eliminating the powers higher than n 2 1 of x. The recursion relations

for the coefficients a (k)
j can be written in matrix notation,

-
a (k 1 1) 5 !

-
a (k)

where the matrix ! is given by

! 5 1
2 An 2 1 1 0 ¼ 0 0

2 An 2 2 0 1 ¼ 0 0

2 An 2 3 0 0 ¼ 0 0

¼ ¼ ¼ ¼ ¼ ¼
2 A1 0 0 ¼ 0 1

2 A0 0 0 ¼ 0 0 2
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and

-
a k 5 1

a k
n 2 1

a k
n 2 2

¼
a k

2

a k
1

a k
0 2 ,

-
a (1) 5 1

0

¼
0

2 1

1

0 2
Forming another column vector from the n generation functions

-
f 1

fn 2 1

fn 2 2

fn 2 3

? ? ?
f2

f1

f0 2 , fm 5 o
`

k 5 1

z k 2 1 a (k)
m

we may write

-
f 5 o

`

k 5 1

(z!)k 2 1 -
a (1) 5 (1 2 z!) 2 1 -

a (1)

The resolvent of the matrix ! is easily computed. The principal minors of

1 2 z! are

D1 5 1 1 zAn 2 1

D2 5 Z 1 1 zAn 2 1 2 z

zAn 2 2 1 Z 5 1 1 zAn 2 1 1 z2An 2 2

: (3)

Dk 5 1 1 zAn 2 1 1 z2An 2 2 1 ? ? ? 1 zkAn 2 k

Dk 5 Dk 2 1 1 zkAn 2 k, 1 # k # n

Dn 5 det(1 2 z! )
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Hence we obtain the generating functions for the n-level case

-
f [ 1

fn 2 1

fn 2 2

fn 2 3

? ? ?
f2

f1

f0 2 5
1

Dn 1
zn 2 3(z 2 1)

D1z
n 2 4(z 2 1)

D2z
n 2 5(z 2 1)

? ? ?
Dn 2 3(z 2 1)

z n 2 2A1 1 zn 2 1A0 1 Dn 2 2

A0z
n 2 2(1 2 z) 2 (4)

Since

S 5 Tr F o
`

k 5 1

r k

k G 5 Tr F # 1

0

dz o
`

k 5 1
o
n 2 1

m 5 0

a (k)
m z k 2 1x m G

the final expression for the entropy is

S 5 #
1

0

dz o
n 2 1

m 5 0

fm(z) Tr x m (5)

and

Tr x k 5 o
k

m 5 0

( 2 1)m3k
k!

m!(k 2 m)!
, 30 5 n, 31 5 1

The formula for the entropy, equation (5), is the principal result of this

paper. It can be easily shown that the integrand is a regular functions on the

integration domain. Equation (5) can be used for numerical and analytical
calculations.

We will illustrate the use of the method by two examples.

Example. n 5 3: The coefficients of the characteristic identity (2) are

A0 5 d 2 m , A1 5 m 1 1, A2 5 2 2

and from equation (3) we have

D3 5 1 2 2z 1 ( m 1 1)z 2 2 ( m 2 d )z 3

Equation (4) takes the form

-
f (z) 5

1

D3 1
(z 2 1)

1 1 z (A1 1 A2) 1 z 2A0

z(1 2 z)A0 2
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Calculating the entropy from equation (5) making use of

Tr 1 5 3, Tr x 5 2, Tr x 2 5 2 2 2 m

we find the result already stated in equation (1).

Example. n 5 4: The coefficients in the characteristic equation (2) are

A0 5 m 4 2 m 3 1 m 2,

A1 5 m 3 2 2 m 2 2 1,

A2 5 m 2 1 3,

A3 5 2 3

D3 5 1 2 3z 1 ( m 2 1 3)z 2 1 ( m 3 2 2 m 2 2 1)z 3 1 ( m 4 2 m 3 1 m 2)z
4

The generating functions are

f3 5 z2 2 z

f2 5 2 1 1 4z 2 3z 2

f1 5 z 3( m 4 2 m 3 1 m 2) 1 z 2( m 3 2 m 2 1 2) 2 3z 1 1

f0 5 ( m 4 2 m 3 1 m 2)(z
2 2 z 3)

We calculate the entropy from equation (5), making use of

Tr x 3 5 3 2 3 m 2 2 2 3 m 3,

Tr x 2 5 3 2 2 m 2,

Tr x 5 3,

Tr 1 5 4

and we have

S 5 #
1

0

dz
2 ( m 4 2 m 3 1 m 2)z

3 1 4( m 4 2 m 3 1 m 2)z
2 1 (3 m 3 2 5 m 2)z 1 2 m 2

1 2 3z 1 ( m 2 1 3)z 2 1 ( m 3 2 2 m 2 2 1)z 3 1 ( m 4 2 m 3 1 m 2)z
4

5 #
1

0

dz
2 A0z

3 1 4A0z
2 1 (3A3 1 A2)z 2 2A2 2 6

1 2 3z 1 A2z
2 1 A3zz

3 1 A4z
4

The case n 5 3 arises when m 4 5 0; then the denominator and nominator

have a common factor z 2 1.

4. CONCLUSIONS

We have proposed an analytical expression for the von Neumann entropy

for n-level quantum systems which does not involve the diagonalization of
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the density matrix. The expression determines the entropy in form of an

integral of a rational function over (0,1) # R. The coefficients in the rational

function are symmetric functions of the eigenvalues of the density matrix.
Our numerical tests show that this formula can be efficiently used for computer

simulations. We also believe that it can be useful for analytical work.
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